Gamma oscillations induced by kainate receptor activation in the entorhinal cortex in vitro.
نویسندگان
چکیده
Gamma frequency (30-80 Hz) oscillations are recordable from human and rodent entorhinal cortex. A number of mechanisms used by neuronal networks to generate such oscillations in the hippocampus have been characterized. However, it is as yet unclear as to whether these mechanisms apply to other anatomically disparate brain regions. Here we show that the medial entorhinal cortex (mEC) in isolation in vitro generates gamma frequency oscillations in response to kainate receptor agonists. Oscillations had the same horizontal and laminar spatiotemporal distribution as seen in vivo and in the isolated whole-brain preparation. Oscillations occurred in the absence of input from the hippocampal formation and did not spread to lateral entorhinal regions. Pharmacological similarities existed between oscillations in the hippocampus and mEC in that the latter were also sensitive to GABAA receptor blockade, barbiturates, AMPA receptor blockade, and reduction in gap junctional conductance. Stellate and pyramidal neuron recordings revealed a large GABAergic input consisting of gamma frequency IPSP trains. Fast spiking interneurons in the superficial mEC generated action potentials at gamma frequencies phase locked to the local field. Stellate cells also demonstrated a subthreshold membrane potential oscillation at theta frequencies that was temporally correlated with a theta-frequency modulation in field gamma power. Disruption in this stellate theta frequency oscillation by the hyperpolarisation activated current (Ih) blocker ZD7288 also disrupted theta modulation of field gamma frequency oscillations. We propose that similar cellular and network mechanisms to those seen in the hippocampus generate and modulate persistent gamma oscillations in the entorhinal cortex.
منابع مشابه
The Role of GLUK5-Containing Kainate Receptors in Entorhinal Cortex Gamma Frequency Oscillations
Using in vitro brain slices of hippocampus and cortex, neuronal oscillations in the frequency range of 30-80 Hz (gamma frequency oscillations) can be induced by a number of pharmacological manipulations. The most routinely used is the bath application of the broad-spectrum glutamate receptor agonist, kainic acid. In the hippocampus, work using transgenic kainate receptor knockout mice have reve...
متن کاملRegion-specific reduction in entorhinal gamma oscillations and parvalbumin-immunoreactive neurons in animal models of psychiatric illness.
Psychiatric illnesses, particularly schizophrenia, are associated with disrupted markers for interneuronal function and interneuron-mediated brain rhythms such as gamma frequency oscillations. Here we investigate a possible link between these two observations in the entorhinal cortex and hippocampus by using a genetic and an acute model of psychiatric illness. Lysophosphatidic acid 1 receptor-d...
متن کاملCarbachol induces fast oscillations in the medial but not in the lateral entorhinal cortex of the isolated guinea pig brain.
Fast oscillations at 25-80 Hz (gamma activity) have been proposed to play a role in attention-related mechanisms and synaptic plasticity in cortical structures. Recently, it has been demonstrated that the preservation of the entorhinal cortex is necessary to maintain gamma oscillations in the hippocampus. Because gamma activity can be reproduced in vitro by cholinergic activation, this study ex...
متن کاملEarly Cortical Changes in Gamma Oscillations in Alzheimer’s Disease
The entorhinal cortices in the temporal lobe of the brain are key structures relaying memory related information between the neocortex and the hippocampus. The medial entorhinal cortex (MEC) routes spatial information, whereas the lateral entorhinal cortex (LEC) routes predominantly olfactory information to the hippocampus. Gamma oscillations are known to coordinate information transfer between...
متن کاملGluK2-Mediated Excitability within the Superficial Layers of the Entorhinal Cortex
Recent analysis of genetically modified mice deficient in different kainate receptor (KAR) subunits have strongly pointed to a role of the GluK2 subunit, mediating the vulnerability of the brain towards seizures. Research concerning this issue has focused mainly on the hippocampus. However, several studies point to a potential role of other parts of the hippocampal formation, in particular the ...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
عنوان ژورنال:
- The Journal of neuroscience : the official journal of the Society for Neuroscience
دوره 23 30 شماره
صفحات -
تاریخ انتشار 2003